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Abstract—Network slicing is a key technology for 5G and
future mobile networks. It enables the creation of different
virtual networks on the same physical infrastructure. By applying
network slicing to wireless mesh networks(WMNs), it’s possible
to provide communication infrastructure in a quick and less
complicated way. This paper shows an approach based on an
evolutionary algorithm connecting multiple WMN nodes to a
slice. The first step is modeling the WMN as an undirected graph
to get a data structure for the algorithm. The paper then shows
the procedure of the different steps of the algorithm. It also shows
at which number of nodes to connect the algorithm outperforms
a brute force approach. The final results shown in this paper are
how the time complexity increases when adding additional nodes
to the slices and increasing the network size.

Index Terms—Network Slicing, Wireless Mesh Networks, Evo-
lutionary Algorithms, Optimization, Network Model

I. INTRODUCTION

Network Slicing is a key feature of modern 5G networks that
allows different services with varying requirements to operate
on the same physical infrastructure. The network provides
multiple independent virtual ”slices” for each use case based
on the physical network infrastructure. The concept has been
proposed for 5G networks but cannot be transferred from
5G networks to WMNs without further research due to their
different architectures. In a wireless mesh network, a slice
consists of multiple nodes placed at different locations within
the network. This is, in principle, shown in Figure 1. The
physical nodes host virtual network functions (VNFs) and are
connected through virtual links marked in the figure. If this
network has no connections to other networks or the internet,
the functionalities of the slices must be provided by the mesh
network itself.

Fig. 1. Node types in the wireless mesh network

A wireless mesh network can restore communication in
disaster areas. New nodes can join or leave, resulting in
topology changes. This is relevant in natural disasters because
nodes can be damaged. Widely available technology should be
used, but communication must remain reliable and adaptable.
Network slicing can provide virtual networks tailored to the
needs of different groups of participants.

Wireless network links have limited capacity due to their
shared media nature. Network slicing can help address this
issue by enabling the creation of independent virtual networks.
This paper proposes a method for creating and deploying
network slices on a wireless mesh network. It uses an evo-
lutionary algorithm to connect multiple nodes belonging to a
slice and evaluates slice placement based on a predefined cost
function. This paper focuses on determining how this method
behaves with large networks and ever-larger slices. The paper
is organized as follows: Related work is shown in Section
II. Section III describes the mesh network model. Section IV
introduces the node connection concept for network slicing.
Experimental validation is described in Section V. The paper
concludes in Section VI.

II. RELATED WORK

The article in [1] suggested decreasing packet loss in
wireless mesh networks by transmitting packets through var-
ious virtual interfaces. However, this approach lacks multi-
tenancy, virtualization of network functions, and resource-
sharing, which are necessary for a network-slicing concept.
The papers, [2], [3] and [4] presented a wireless disaster
network that uses network function virtualization (NFV) with
increased resilience and better distribution of control data.
However, they did not cover network slicing.

In [5], a resource-efficient approach is presented for service
function chains (SFC), which relocates virtual network func-
tions (VNFs) to different network parts to minimize resource
consumption. The work in [6] focused on the optimal place-
ment of network functions in a service chain using heuristic
algorithms. [7] also presented an approach for optimizing VNF
replacement to minimize the end-to-end delay of an SFC.
Finally, [8] dealed with the placement of service function
chains but did not consider the optimal connection between
nodes or network slicing. The work in [9] proposed a man-
agement scheme that uses interference between wireless links
for topology decisions. The proposed algorithm creates a path
through the wireless network based on a weighted sum of



the interferences, aiming to minimize interference and create
an optimized path. However, the term ”sliced” used in the
paper did not refer to network slicing as defined in Section I.
Virtual network embedding (VNE) is the process of mapping a
virtual network to a physical network. The resource limitations
of WMNs make optimal placement and chaining of virtual
network functions important. A survey by [10] discussed
relevant approaches, but a generalized approach for Network
Slicing was not included, nor are the special properties of
WMNs addressed.

Evolutionary algorithms are commonly used for network
optimization, such as in [11] and [12]. These works focused on
multi-objective routing optimization without considering VNF
placement or network slicing. Another related work in [13]
used genetic algorithms for in-network processing in wireless
sensor networks but did not handle multi-node connections or
network slicing.

As we delved into the topic of network slicing in wireless
mesh networks, it became apparent that the literature outlined
in this chapter only scratches the surface of the various aspects
that need to be considered. While virtualization, sharing net-
work capacities, and WMNs are all crucial components, each
one only provides a partial solution to the complex puzzle of
network slicing. A more comprehensive approach is needed,
one that considers all the various aspects of network slicing
and how they interact with each other.

III. MODELING THE ENVIRONMENT

This section proposes a model of the wireless mesh network
and the network slices. The model is necessary for describing
optimization approaches and for algorithmic processing. Wire-
less mesh networks have some architectural particularities that
have to be considered for modelling the network infrastructure.

A. Model of the overall Network

It is possible to model the WMN as an undirected graph
G(V,E), with the nodes V and the edges E as it is shown
in [9]. The graph vertices represent the mesh nodes of the
WMN, and the edges indicate the links between the WMN
elements. Figure 2 gives an example of a graph representation
of a wireless mesh network.

Fig. 2. Model of a wireless mesh network as a graph

Every link e ∈ E has a maximum consumable bitrate
B(e), representing the link’s maximum transmission speed.
Because of the wireless nature of the links in a WMN,
the bitrate is not a constant value, and it depends mainly
on the distance between the nodes, the interference, and
obstacles in the environment. Thus, interference on the radio
link is represented by a reduction of the maximum available
bitrate. In real networks, the devices reduce the modulation
scheme when the link quality decreases. This also reduces
the maximum available bitrate on a link. Also, in wireless
transmissions, only one device can simultaneously transmit or
receive at a channel. This leads to a decrease in the maximum
consumable bitrate on the specific link. A model for a wireless
mesh network has to consider these constraints. A possible
assumption to this is to divide B(e) with the number of
identical channels Nch used in the reception range of a node.
Therefore B(e) is calculated with the equation: B(e) = Bmax

Nch
,

where Bmax describes the maximum possible bitrate on the
link when there is no channel reuse. Any virtual link l on a
wireless link e consumes a part be(l) of the maximum available
bitrate B(e). As a result, the number of streams a link can
supply that can work with a specific bitrate, e.g., 10 Mbit/s, is
limited. The resulting constraint shows Equation 1. A virtual
link l describes a communication relation between a start node,
an end node, and intermediate virtual network functions if
present. If the sum of all values from be(l) exceeds B(e), a
link should be marked as unavailable.∑

l∈L

be(l) ≤ B(e) (1)

Every WMN node has computing power Cn for providing
virtual network functions (VNFs). The value for Cn describes
how many percent of the maximum CPU power is still
available for virtual network functions: Cn ∈ [0%, 100%]. A
VNF f running on a node needs a part c(f) of the node’s
computing power. The maximum number of VNFs a node can
provide without performance degradation due to CPU overload
results from the constraint of Equation 2:∑

f∈F

c(f) ≤ Cn (2)

If the sum of c(f) exceeds the value of Cn, a node cannot
host any additional VNF. These constraints should mainly be
considered when optimizing.

B. Wireless Channel Distribution

In standard mesh networks, each node has only one radio
interface. This results in a reduced transmission rate due to
the wireless medium’s half-duplex characteristic, which allows
only transmitting or receiving simultaneously. Additionally,
other nodes on the same channel cannot transmit while an-
other is transmitting inside their interference range. Multiple
interfaces can reduce the problem, but each requires a different
channel. The weighting function used in [14] did not con-
sider the channel distribution, which can affect the maximum
achievable bit rate. In contrast, this paper’s weighting function



considers the frequency of channel reuse and adjusts the link
weight accordingly. The calculation formula for the weighting
W on a link e is as follows:

W =

{
e7∗

B∗Nch
Bmax B ≤ Bmax

Inf. B > Bmax

Factor 7 results from the fact that W should have the value
1000 for B = Bmax or B ∗ Nch = Bmax. The value
1000 was determined empirically. Since a path determination
algorithm uses this weighting value to determine the paths,
the channel distribution is thus also taken into account in
the path determination. To verify the assumptions described
here, various simulations were carried out using the NS3
network simulator. The behavior assumed here concerning the
reduction in bit rates was confirmed.

C. Model of the slices in the Network

A network slice consists of the following components:
Virtual network functions, a priority value to define different
slice priorities, and the virtual links belonging to the slice.
Derived from the virtual links and the VNFs, a slice is a
subgraph Gs(Vs, Es) ∈ G(V,E) [9] of the WMN graph. Vs

is the set of nodes that host the slice VNFs(Vf ), forward the
traffic of a slice flow (Vt) or work as a slice access point node
(Vap). Therefore, Vs = Vf ∪ Vt ∪ Vap. Es is the set of edges
that connect the nodes of Vs.

IV. NODE CONNECTION CONCEPT

In order to place a slice within the WMN, we need to
identify three types of nodes: access point nodes (Vap), VNF
nodes (Vf ), and transport nodes (Vt). Access point nodes
cannot be changed, while VNF nodes can be moved through
NFV. Transport nodes forward data traffic of one or more slices
exclusively. Optimizing paths between access point nodes and
placing VNFs on these paths is necessary, resulting in two
optimization objectives:

• Placing the VNFs
• Connecting the access point nodes on the shortest path.

In networking, the Dijkstra algorithm [15] is useful for con-
necting two nodes. However, using it to connect multiple nodes
is challenging. The approach of connecting access point nodes
individually through the shortest path is insufficient, as it may
not provide the shortest connection between all the nodes. This
principle was proved using an example in Figure 3.

Fig. 3. Difference between shortest path calculations

Assume that the order in which Dijkstra’s algorithm is
applied to the nodes does not matter. Dijkstra’s algorithm can

be applied to nodes in any order, but the number of links
used should be the same for different permutations. With the
permutation (1, 18, 20, 5, 10), 19 links are used. With (1, 20,
10, 5, 18), only 11 links are used. This shows that the order
matters and further optimization is necessary.

The goal is to optimize the positioning of the slice in the
WMN with minimal link usage and optimal placement of
VNFs. The main aspect of this work should be the connection
of the nodes. The recombination process of the algorithm can
additionally replace the VNFs. This results in a multi-node
shortest path problem, similar to the traveling salesman prob-
lem [16] or the vehicle routing problem [17]. In comparison,
however, the problem mentioned here differs from this:

• Created paths can be used more than once.
• Certain nodes can be moved.
• No closed loop has to be created.

Such a problem belongs to the group of NP-hard problems.
NP-hard problems cannot be efficiently solved using brute
force methods that test all possibilities due to their steep
complexity increase with size. Calculating all permutations to
check the path length becomes impractical as the number of
permutations increases rapidly based on the factorial function.
However, the solution thus found is the optimal one, as all
possible ones have been tested. The graphic in Figure 4 shows
the rapid increase in time.

Fig. 4. Comparison between the brute force method and the evolutionary
algorithm.

The processing time increases with every added node in the
permutation. Therefore, the brute force method is usable with
up to 8 nodes, after which another method is necessary. An
evolutionary algorithm has a considerably shorter runtime and
is used for larger permutations. With a permutation size of
10, the brute force approach takes 2579 seconds, while the
evolutionary algorithm takes only 7.3 seconds.

Evolutionary algorithms use the principle of biological
evolution for optimization [18]. The principle is based on the
following steps: evaluation, selection, recombination, muta-
tion, and re-insertion. The procedure shows Figure 5.

Fig. 5. Principle of Evolutionary Algorithms.



The evolutionary algorithm begins with a randomly gen-
erated population, which is evaluated and the best elements
are selected. The remaining elements are sorted out and
used for recombination to create new elements. The mutation
prevents the algorithm from getting stuck in local optima.
A termination criterion should be set to end the algorithm.
For all of the steps shown in Figure 5, there are different
possibilities for implementation. In the first step, the initial
population of permutations is evaluated by the so-called fitness
or evaluation function. Each element receives a tag with
the corresponding evaluation value. The evaluation function
evaluates the permutations based on two criteria:

• the length of the paths of a slice
∑

e ∈ Es,
• the average utilization of a node the path contains which

is no AP node
∑

e∈En
(W (e))∑

e∈En

.

En is the set of edges a node n has. Based on these criteria,
we can calculate the cost value for placing a slice in the mesh
network with Equation 3.

cost = a ∗
∑
e∈Es

+
∑

n∈Vt∪Vf

b ∗
∑

e∈En
W (e)∑

e∈En

(3)

The adjustable parameters a and b are used to modify
optimization weighting. Tournament selection [19] is used to
select the best elements from a population. Four randomly
selected elements are evaluated using the function, and the
best one is chosen. Only 25% of the best elements are used for
recombination. The selection procedure is shown in Algorithm
1.1.
Algorithm 1.1 Selection Procedure
Require: population, graph, slice

1: for i = 1, 2, .... length(population)/4 do
2: j ← 0
3: while j ¡ 4 do
4: turn[j]← population[random]
5: j ++
6: end while
7: for e = 1, 2, ... length(turn) do
8: FitnessV alue← FitnessFunction(turn[e])
9: turnRes[e]← [FitnessV alue, turn[e]]

10: end for
11: sort(turnRes)
12: returnV alue← turnRes[0]
13: end for
14: return returnValue

The elements processed by the algorithm contain nodes of
the WMN. These can only take on discrete values. Discrete
recombination is therefore used as the recombination scheme.
These are then used to form new elements. The nodes are
selected randomly, but all with the same probability [20]. This
principle is shown in Figure 6.

Fig. 6. Recombination principle

The approach doesn’t remove original elements because
newly created ones can be worse. So, two are added for
every initial pair. The recombination procedure is shown in
Algorithm 1.2. The input elements n and m are two chosen
elements from the selection step. Both are equal in length, so
the loop iterates up to the length of one of the elements. The
random variable var1 is either zero or one. Therefore, in every
iteration of the for loop, the new element gets a value from m
or n. After this is done, the recombined element is returned.
Algorithm 1.2 Recombination Procedure
Require: n, m

1: for i = 1, 2, .... length(element1) do
2: var1← randomInteger(0, 1)
3: newElement[i]← n[i] ∗ var1 +m[i] ∗ (1− var1)
4: end for
5: return newElement

After the recombination part, every element has a small
probability of mutation. This means that within an element,
the entry for a node can change spontaneously with this
probability. As mentioned in this section, this is done to avoid
or overcome local optima. Algorithm 1.3 shows this procedure.
Algorithm 1.3 Mutation Procedure
Require: population, mutationRate

1: for i = 1, 2, .... length(population) do
2: if random(0, 1) ≤ mutationRate then
3: k ← randomInteger(0, length(population[i]))
4: randNode← randomInteger(0, Nodes)
5: population[i][k]← randNode
6: end if
7: end for

The loop iterates over every element in the population. The
probability for mutation increases or decreases depending on
which value the variable mutationRate is set. When the if-
statement is fulfilled, a random index for the permutation and
a random node for exchange is calculated. The former node
on the specific index is then replaced. Afterwards, the newly
created elements must be checked to see if they contain all
the necessary nodes. This is shown in Algorithm 1.4.
Algorithm 1.4 Node check procedure
Require: population, sliceNodes

1: containNode← False
2: for i = 1, 2, .... length(population) do
3: for j = 1, 2, ... length(sliceNodes do
4: if sliceNode[j] in population[i] then
5: containNode← True
6: else
7: containNode← False
8: return containNode
9: end if

10: end for
11: end for
12: return containNode

The variable containNode is set to true if a permutation
has a specific node. Otherwise, it is false. New elements are



evaluated, added, and the worst ones are removed to keep
the population at 100 elements. This is repeated until the
termination criterion is met, and the best one is stored in an
array after each iteration. The variance is then calculated from
this array, as shown in Figure 7.

Fig. 7. Termination criterion scheme

The algorithm terminates if the variance is smaller than one
for ten values in a row, returning the best element to that
point. VNFs can be repositioned through recombination and
mutation, allowing for optimization of their placement. Access
point nodes are fixed and cannot be changed.

V. TEST AND VALIDATION

We tested the evolutionary algorithm on a wireless mesh
network graph, evaluating its optimization of network pa-
rameters for improved connectivity and coverage. The graph
consisted of mesh routers as nodes and wireless links as
edges. Results were analyzed to determine the algorithm’s
effectiveness.

A. Test Setup

After the algorithm was implemented, it was tested to ensure
its effectiveness. The mutation rate parameter was adjusted
with various values to determine the optimal value for the
algorithm and the point where it diverges. To evaluate the
algorithm’s performance, the overall cost value for the Slice
and the time required to place them in the network were
calculated. The cost value was calculated using the Equation
3. The test was performed on a network with 100 nodes,
equivalent to a 10x10 square architecture, similar to Figure 3.
A slice comprising eleven access point nodes has been defined
because these node types are not changeable. The number
eleven has been chosen because, as shown in Figure 4, brute
force cannot handle more than eleven nodes in a useful amount
of time. The algorithm was executed 10000 times to generate
sufficient values. The same slice was placed in the network
for all 10000 iterations.

B. Result

Table I shows the results of the cost value calculations.
Between the values for 2.5%, 5%, 7.5% and 10%, and 16%
and 20%, there is no significant difference except for out-
liers. At rates of 25% and 33%, there is greater dispersion
upwards and downwards. However, the number of outliers
has also increased significantly. Besides mean and standard
deviation(std), the table also shows the outliers. It can be seen
that these seem to decrease again at higher rates. Therefore,
the row exceed is also listed here. This describes the number

of calculations where no result was found. If these are also
added to the outliers, it becomes apparent how strongly the
algorithm tends to diverge from this point on.

TABLE I
RESULTS FOR THE COST VALUE EVALUATION.

2.5% 5% 7,5% 10% 16% 20% 25% 33%
mean 306 308 311 312 317 319 322 328
std 15 15 16 16 18 18 20 22

outliers 11 9 17 35 136 143 21 46
exceed 0 0 0 0 0 0 624 6032

If only the cost values are considered, a mutation rate
of 2.5% is the best value. However, the calculation time
should also be taken into account. In theory, the calculation
time should increase by increasing the mutation rate. This
is because the algorithm is more likely to diverge. Also,
the amount of outliers should increase. This is exactly the
behaviour shown in Figure 8.

Fig. 8. Results of time measurement with different mutation rates

It is shown that the number of outliers increases with every
increase in the mutation rate. It can also be seen that the
algorithm starts to diverge at a rate of 33%. The detailed results
from this calculation can be seen in Table II.

TABLE II
RESULTS FOR THE TIME VALUE CALCULATION

2.5% 5% 7,5% 10% 16% 20% 25% 33%
mean 19 17 15 14 21 38 87 174
std 6 6 29 8 66 111 177 213

outliers 0 0 1 2 261 689 1701 65
exceed 0 0 0 0 0 0 624 6032

Here, the strong increase in outliers already starts at a
mutation rate of 16%. The values for exceed are the same,
as the time values were collected together with the evaluation
values. As the table shows, the mean value for the time is at
the lowest point with a mutation rate of 5%.

It is essential to test the behaviour as the network size
and number of nodes increase. The results are shown in the
figures 9 and 10. The absolute values of these results are not
as interesting here as the increase in them. Figure 9 shows
the processing time increases when the number of nodes a
slice consists of increases. The time on the y-axis in Figure
9 is in a logarithmic scale. The nodes are increased from 10
to 100 in five node steps. The overall network has a size
of 1024 nodes, which results in a 32x32 node architecture.
Figure 10 shows the increase in the slice evaluation value. In
both figures, it could be seen that the increase happens linearly.



Fig. 9. Results of time measurement with increased number of nodes

Fig. 10. Results of evaluation measurement with increased number of nodes

It can be concluded that this approach works even if the
network or the number of nodes per slice is increased. A
linear increase in processing time can be countered by, e.g.
paralleling the calculations. An evolutionary algorithm is well
suited for this [18] [21]. It is, therefore, possible to use this
approach even in large setups with a feasible expenditure of
time.

VI. CONCLUSION

This paper proposes a technique for optimizing network
slice placement in wireless mesh networks. The network is
modelled as a graph, and an evolutionary algorithm connects
various slice nodes for efficient solutions. A ”brute force”
approach to solve the network slice placement problem would
take too much time to execute practically. The proposed algo-
rithm is flexible and can solve the problem more efficiently,
making it a practical solution. It can optimize the placement
of network slices, leading to better resource utilization and
improved network performance in various scenarios. Tests
were conducted to determine the best mutation rate for an
evolutionary algorithm. Results showed that a mutation rate
of 10% was optimal for minimizing costs, although any rate
between 2.5% and 10% could be used. Higher rates resulted
in scattered results, and lower rates had a slightly increased
calculation time. The second test showed that the proposed
approach for network slice placement and optimization can
effectively handle large networks with increasing slice nodes.
Processing time increased linearly in networks with a max-
imum slice size of 100 nodes and 1024 nodes in total. The

results suggest that the approach can be leveraged in practical
scenarios to improve network performance.
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[20] H. Pohlheim, Evolutionäre Algorithmen: Verfahren, Operatoren und
Hinweise für die Praxis. VDI-Buch, Berlin: Springer Berlin, softcover
repr. of the hardcover 1. ed. 2000 ed., 2013.

[21] B. Olsson, D. Lundh, and A. Narayanan, Biocomputing And Emergent
Computation - Proceedings Of Bcec97. World Scientific, 1997.


