
Decentralised System Architecture for autonomous and cooperative M2M

Application Service Provision

Michael Steinheimer, Ulrich Trick

Research Group for Telecommunication Networks

Frankfurt University of Applied Sciences

Frankfurt/M., Germany

steinheimer@e-technik.org

Michael Steinheimer, Bogdan Ghita

Centre for Security, Communications and Network

Research

University of Plymouth

Plymouth, UK

Woldemar Fuhrmann

Department for Computer Science

University of Applied Sciences Darmstadt

Darmstadt, Germany

Abstract— This publication presents a novel concept for

autonomous and decentralised M2M application service

provision. The functional architecture of the approach is

introduced as well as a detailed description of the system

structure and process for application creation. Furthermore,

this publication describes details about the proposed process

for decentralised M2M application service management and
formal description of M2M application services.

Keywords- M2M application service; P2P; service provision

I. INTRODUCTION

Devices are becoming more and more intelligent (i.e.
they include complex functionality for monitoring and
control). Additionally the devices receive the functionality
for communication (this enables remote monitoring and
controlling of devices). Because of the increasing number of
intelligent devices, which support forming of intelligent
environments, many new application fields can be
established (e.g. as presented in [1] smart building, electro
mobility, smart city, energy optimisation etc.). Especially the
end user domain is an application field with powerful
potential, however not addressable by external service
providers.

Machine-to-Machine Communications (M2M) systems
realise the integration of such intelligent devices by
provision of specific M2M applications. Traditional M2M
systems and the corresponding M2M application services
have the focus to support specific business processes.
Traditional M2M applications provide their functionality as a
service for users (end users or companies). Currently existing
concepts from standardisation and research to implement
M2M application services provision focus on central
approaches. Projects from research area are e.g. INOX
Managed Service Platform [2], M2M Platform Project based
on SOA [3], BOSP Business Operation Support Platform [4],
IMS enabled M2M Service Platform [5], e-DSON [6].
Commercial M2M platforms implement acc. [7] mostly the

oneM2M standard for M2M [8]. Disadvantages of the
centralised approaches are e.g. that the user of the
application is dependent of the platform provider as a central
instance. Often M2M platforms provide their functionality
only for specific application fields and are therefore less
flexible. Centralised provision of platforms requires many
resources (costs for operation, maintenance, availability,
application development). End users often have no
possibility to define applications themselves (since the
creation of applications requires expert knowledge or the end
user does not have access to the platform) or the devices
present in user's personal environment cannot be connected
to the M2M platforms.

The personal environment of the end user described
above is difficult to address by external service providers,
since the activities (controlling and monitoring of M2M
devices) carried out in this area would severely affect the end
user or challenge data security. To antagonise this issue, it
was proposed in [9] to integrate the end user. For this
purpose, an approach was presented in [9-12], which allows
end user to define services and automation tasks for their
personal environment. The Service Management Framework
(SMF) presented in [9-11, 13] consists of a local Service
Creation Environment (SCE) and a Service Delivery
Platform (SDP). The presented SMF integrates the devices
present in the personal area of the end users regardless of
their technology and provides basic services, e.g. for
multimedia communication. The end user can combine
intelligent and communicable devices as well as the basic
services using the SCE and thus define personalised services
for his personal area (e.g. automation tasks, sensor-
dependent signalling or monitoring). An elementary
requirement for the platform described above was that it
provides an opportunity to develop services intuitively. An
intuitive development can be realised by a graphical
development process and by modelling the behaviour of a
system independently from underlying technology. Both
were implemented in the above-mentioned approach. The

graphical development process and the underlying
methodology are discussed in section III.

By the approach proposed in [1, 9-13], the end user has
thus been given the opportunity to create graphically and
intuitively services for his personal environment. An
approach has been defined in [1, 10, and 12] as to how these
services can be made available to other end users or
organisations in order to gain added value through the use of
the services. In [1, 10, and 12] it was proposed that end users
combine the individually offered services to provide a more
complex, intelligent and more powerful service. As shown in
Fig. 1, a complex service consists of the combination of
several distributed services that are networked together. Two
ways exist to combine services into an application. Multiple
end users can offer the same service with the same local
functionality running parallel/ synchronously (service
aggregation). Alternatively, end users can offer services that
have a different functionality and are composed to an
application by linking the services together (service
composition).

As described above, the central approaches for defining
M2M applications have various disadvantages and are not
very flexible. Therefore, as a prerequisite for the approach
introduced above, it was defined that creation and provision
of individual services and the cooperative provision of an
application (consisting of distributed services) is exclusively
decentralised, i.e. without the integration of logical as well as
physical central entities into the overall system. Under these
circumstances, the realisation of the approach cannot be
implemented with the existing architectures for M2M
platforms. Therefore, an approach has been presented in [1,
10, and 12], which allows implementation following a purely
decentralised approach.

This publication dedicates to present a more flexible
methodology for realisation of M2M systems with the focus
on dissolving the bindings to centralised entities, integration
of the end user for realisation of M2M applications satisfying
the individual requirements of end users, and realisation
without specialised and dedicated M2M infrastructures.
Furthermore, this publication aims to introduce details about
the functional architecture of the proposed concept as well as
methodologies forming the basis for the presented concept of
autonomous decentralised M2M application service
provision.

E
n

d
-u

s
e

r
D

o
m

a
in

Access Network Layer

C
e

n
tr

a
l

O
rg

a
n

is
a

ti
o

n

D
o

m
a

in

Access Network Layer

Service Consumer

Service Composition

Service Provider 1

Service x

Service Provider 2

Service y

Service Provider n

Service z

Service Aggregation

Service Provider 1

Service x

Service Provider 2

Service x

Service Provider n

Service x

IP Core Network/ Internet

Central

Service

Provider

Figure 1. Cooperative M2M Application Service Provision.

II. FUNCTIONAL ARCHITECTURE

In order to clarify how an application in M2M context is
structured, definitions of [14, 15, and 16] are used to classify
and separate service and application in context of
application/ service provision in M2M (illustrated in Fig. 2).
It illustrates that an application consists of one or more
underlying services that are combined (i.e. aggregated or
composed) and, if required, exchange information. An
application service contains the application and an
application interface to make the application consumable for
other entities. The services are realised by one or more
service components, which form the building blocks of
services. The service components itself are blocks of
services. The service components itself are realised via
several software applications executed on several execution
environments.A service as well as an application can be
realised on technical or non-technical principles (i.e. it can
be provided using technical devices, e.g. computers, or by a
human, e.g. personal assistance services). To distinguish the
kinds of services and applications, if required they are
indicated as technical service/ application or non-technical
service/ application. General indication of both is service/
application.

Fig. 3 shows the functional architecture of the concept
for the autonomous P2P-based provision of M2M application
services. The architecture is structured into four layers. The
following describes the respective layers in their
functionality. Network Layer: End user’s M2M gateways
are connected with each another via an IP network,
respectively the Internet. End users can be located at
different geographic locations as well as in different access
networks (wireless mobile networks or fixed access
networks), which are interconnected via a core network. P2P
Network Layer: End user nodes represent equivalent
instances and are connected to each other via a P2P network.
The P2P Network Layer includes the sub-layer P2P Overlay
Layer and P2P Communication Layer. Any data storage in
the presented system is decentralised via the end user clients
within the P2P overlay layer. For this purpose, the clients,
respectively the peers form a P2P overlay network. The
overlay network is either a pure structured overlay network
or a pure unstructured overlay network (due to the general
restriction to avoid also partly centralised system
architectures). The overlay network is among other things
used as explained in [10, 11, 13] to store the addressing
information of the peers (assignment temporary to static

Application Service 2Application Service 1

M2M

Gateway

Fkt. 4Fkt. 3 Fkt. 6Fkt. 5 Fkt. nFkt. 7Fkt. 2Fkt. 1

Application 2

(e.g. Building Surveillance)

Execution Environment 1
(e.g. Mobile Phone)

Execution Environment 2

(e.g. Application Server)

Execution Environment n
(e.g. Embedded System)

Service

Component 3

Service 2
e.g. inform supporters

Application 1

(e.g. Weather App)

Service

Component 4

Service

Component n

Service

Component 1

Service

Component 2

Service n
e.g. video surveillance

Service 1
e.g. event detection

Application Interface Application Interface

Software

Application 1

Software

Application n

Software

Application 2

Software

Application 3

Figure 2. Classification of Service and Application.

(IP) Network Layer

P2P Network Layer

P2P Overlay Layer

M2M Application

Service

Service Service

M2M Communication Protocol

M2M Service Layer

M2M

Communication

Protocol

Service Service

P2P

Overlay

Protocol

M2M Application Layer

Service

Description

Language

M2M Application

Service

M2M Application

Service

Peer

A

Peer

N

Peer

A

P2P Communication Layer

Service

Provider

A...N

Service

Consumer

A...N

Peer

N

Access

Network 1

Access

Network N
IP Network/ Internet

Figure 3. Functional Architecture.

contact address). In addition, the P2P overlay network is
used to manage and configure services and applications
(described in section IV). The information exchange between
the peers for the service utilisation (service requests,
confirmations) as well as the necessary signalling to generate
the application automatically is also done directly between
the peers. For this purpose, various M2M communication
protocols (e.g., CoAP, HTTP, SIP, MQTT) can be used.
M2M Service Layer: The services defined and provided by
the end users are available via the M2M service layer and
can be used via the corresponding interface. As described in
section III and [9], the services are formally described by a
service description language. The service interface is
described by an interface specification and is available in the
M2M Service Layer (explained in section III). M2M
Application Layer: The distributed M2M application
services are implemented within the M2M application layer.
For this purpose, the services available via the M2M Service
Layer are combined with each other as described in section
III. The exchange of information between the services,
respectively applications takes place via the P2P network
layer by P2P communication protocols. [17]

III. SYSTEM STRUCTURE AND APPLICATION CREATION

In existing platforms for providing M2M applications,
the configuration of automation tasks or the creation of
application logic is highly dependent on the implementing
systems. To prevent this, the concept defined in this research
work was designed with a model-based system structure,
derived from [18]. Models, expressed by modelling
languages, describe model-based infrastructures and systems.
The behaviour of an application or a system is described by
means of a platform-independent model, separated from the
technology-specific realisation of the system [18]. The

behaviour of a system can be modelled with a behavioural
model in an abstract manner with much lesser complexity
than the platform that implements the behaviour of the
system or the application [19]. By stepwise abstraction,
respectively transformation, an abstract modelled system is
transformed acc. [20] into a concrete system by means of
multi-step transformation. Fig. 4 shows the transformation
level defined for the approach described in this publication.
Derived from [20], transformation and mapping rules have
been defined to automatically process the transformation
from the abstract model of the system created by the user to
the platform-specific models shown in Fig. 4 of the novel
architecture for provision of distributed M2M applications
described in this publication. As described above, the
intuitive development of services and applications is done by
graphically modelling the behaviour of a service or creating
a behaviour model of service/ application. This allows end
users to describe the system without having to have any
specific knowledge about the execution platform. The
behaviour of a system can be modelled intuitively with a
state machine. For this purpose, states represent the devices/
services that should be combined, and transitions represent
the connections (information flow) between the devices/
services. To enable end user to model a system using state
machine concept, a domain independent modelling language
is required which can be used to describe the behaviour of a
system abstracted in form of a state machine. [17] The
following requirements were initially defined for the
selection of an optimal modelling language for this purpose:
Machine readability: Since no further entities are to be
involved in the application generation or its implementation,
i.e. the application, respectively the service should be
generated automatically after modelling, the modelling
language must be machine-readable. It must therefore be a
formal language. Standardised language: It must be a
standardised modelling language in order to ensure the
easiest portability. Immediate mapping of graphical and
machine-readable notation: Since graphical modelling by
the end user was defined as a central aspect of the concept, a
direct mapping of the graphical notation (elements of the
state machine) to the machine- readable notation must exist.
Intuitive usability: Since the system is to be used by an
average technically experienced end user after a short
training, the complexity of the graphical notation has to be
low. Complex and non-intuitive modelling forms reduce or

Platform Specific

Model (PSM) Transformation

Level 3

Structured P2P Overlay Unstructured P2P Overlay

SIP CoAP

Platform Specific

Model (PSM)
Transformation

Level 2

Data Storage

Platform Independent

Model (PIM)
Transformation

Level 1
End-User

Platform Specific

Implementation
Transformation

Level 4

Application Artifacts on distributed Runtime Environments

Transformation

Pattern

Transformation

Pattern

No Platform specific

Knowledge required

Genaral Platform specific

Knowledge required

Implementation specific Knowledge required

Tetailed Platform specific

Knowledge required

P2P Communication

Transformation

Pattern

Figure 4. Transformation Level.

eliminate end user usability. Existing parser/ interpreter
implementation: To enable further processing the formal
language by a machine, an implementation of a
corresponding parser or interpreter must exist. Nested states:
Combination of application services. A system (M2M
application service) should be combined with other systems.
A previously modelled system is to be reused by being
embedded in another application. State parametrisation:
The services that are to be combined must have the
possibility to be parameterised (definition of configuration/
input and output parameters). Therefore, the states in the
state machine must also be parameterisable. Conditional
state transitions: The transition of a state or transmission of
information to a service or the activation of a service should
be provided with a condition. Synchronisation of states: To
synchronise parallel flows, there must be a possibility for
synchronisation. According to these requirements, the
following state machine-based modelling languages and
modelling concepts have been examined: Business Process
Modeling Notation (BPMN), Business Process Modeling
Language (BPEL), UML State Machines, Petri Nets, and
Finite State Machines. The results of the evaluation are
shown in TABLE I. Requirements the modelling languages/
concepts satisfy are marked with “+”; requirements not
satisfied are marked with “-“; requirements partially satisfied
are marked with “o”. The evaluation of the above-mentioned
modelling languages showed that UML State Machines fully
meet the requirements. UML State Machines are based on
Harel Statecharts, which, due to their structure, meet the
structural requirements for the state machine. The
standardised description language StateChart XML
(SCXML) makes it possible to express Harel statecharts in a
formal notation. An SCXML parser, which is also available,
enables the machine readability and thus the automatic
processing of the formally described state machine. [17] For
modelling of a system, the SMF, as described in [9-11, 13],
provides a GUI to the end user. Using this GUI, the end user
graphically creates a state machine that represents the
behaviour of the system. The GUI provides an overview of
all available devices and services. The services and smart
devices that are in the personal environment of the end users,
e.g. in its Smart Home, are stored within the SMF in a local
repository. The services offered by other peers are stored in
the P2P overlay as described in following section IV. An
overview of the services stored in the P2P overlay is also
loaded by the SCE as described in section IV and displayed
in the GUI. The end user now graphically combines the
available services and devices by first selecting the desired
devices or services and then connecting the input and output
interfaces defined for the services and devices (transition of
the state machine). As described above, the user models the
behaviour of service/application by defining a state machine.
The following is a description of the elementary elements of
the state machine, as well as the semantic defined by
mapping the elements of the state machine to the service/
application components. In addition to these elements,
further elements of a state machine can be used, which are
not further explained at this point. State element: Devices,
services, and applications are represented by states. State

TABLE I. EVALUATION OF STATE MACHINE MODELLING

LANGUAGES

Modelling Languages

BPMN BPEL UML Petri Nets FSM

Machine read. - + + + -

Standardised + + + + -

Immediate map. - + + + -

Intuitive usability + o + - +

Parser/ Interpreter - + + + -

Nested states o o + + -

State param. - + + - -

Conditional trans. + + + o -

Sync. states o + + + -

parameter: The state parameters represent the data model of
the devices, services and applications. Input, output and
configuration parameters can be defined. Global state
machine parameter: This defines global attributes of a
service/ application. Global attributes are available for all
services and applications and are queried directly from the
source. Transition: The transition from one state to another
state (transition target) represents the connection of devices,
services and applications and the associated information
exchange. Transition condition: Transitions can be
provided with conditions. This defines the precondition
when device, service or application sends an information.
Conditions can be optionally defined. Transition assign
element: The transitions of a state machine have assign
elements. These assign elements define how the output
parameters are assigned to the input parameters of a device,
service or application. Thus, the contents of the messages
that are exchanged are specified via this element. Nested
state element: Using the nested state element enables
embedding an already defined state machine, i.e. a service or
an application, into another service or application. For this
purpose, the corresponding state machine is embedded into a
nested state element. The nested state element then is
integrated as a simple state into the sequence of the state
machine. Parallel state element: The parallel state element
is used to model parallel sequences that can be synchronised
as required at the end. [17] The interface description of a
device, service or application represents the template for a
state. It is embedded in a service or application description or
managed separately. The interface description specifies the
input/ output and configuration parameters as well as the
value ranges of a service/ application. The interface
description is used as a template to represent the devices,
services or applications graphically and functionally in the
GUI. In addition to the above parameters, the interface
description contains further parameters for classifying and
describing a device, service or application by e.g. keywords
or prose. The interface description can be stored in a local
repository or stored in the overlay network. In addition, it is

possible to request the interface description directly from a
peer that offers a service. [17] The SCE automatically
generates the formal description of the end user-modelled
system using SCXML. Service/ application are completely
described by the generated SCXML document. If it is a local
service, the application description is stored locally, parsed,
interpreted and executed according to the defined conditions.
If it is a distributed application, i.e. consisting of distributed
services offered by different peers, the application
description is distributed to the peers that offer a service in
the application context. In this case, each peer receives only
the part of the application description that is required to
configure and execute its individual service. Peers therefore
do not have an overview of the overall system, which
performs as a basis for securing the system. [17]

IV. APPLICATION REGISTRY, CONFIGURATION,
EXECUTION

As described in section II, data storage in the described
approach is performed via structured or unstructured P2P
overlay networks. The following is a description of the
functions for registering and searching, which are
implemented using the overlay network for the management
of services and applications. Services can be offered by
different peers. The peers register their services via the
overlay network. To do so, they store the combination of
service ID and their associated personal temporary contact
information in the overlay. If different peers offer the same
services, several associated peers are stored under the same
entry in the overlay network. Each peer represents a specific
instance of a service. Peers can request the overlay network
to get an overview of all available services or a certain subset
of all services. This overview is required to generate an
application from the various services as described in section
III. Sub-sets of services may include e.g. that services are
only available for a particular region, have further meta
information that can specify a service more detailed, can
only be consumed by a particular group, or implement a
particular interface description. Depending on the type of
request, the overlay networks offer various ways to provide
the overview of the services. For example, the meta-
informations stored for a service can be searched by
keywords. In order to obtain a specific instance of a service
during the application configuration (see below), a peer
makes a request (possibly restricted by search criteria) to the
overlay network. This returns a list of all found instances of a
service. [17] An M2M application service consists of several
services that are interconnected and exchange information.
An M2M application is thus a concatenation of distributed
services. Each service has input and output interfaces. To
realise an application, the output interfaces of a service are
connected to the input interfaces of another service, and the
information is passed from one service to the other. The
description of the application, i.e., which service is
associated with which other service, is defined by a formal
application description (described in section III). The
approach described in this publication has two phases to
realise an application (illustrated in Fig. 5). A configuration
phase in which the application is generated automatically and

A
p
p

lic
a

ti
o
n

E
x
e
c
u

ti
o
n

P
h
a

s
e

A
p
p

lic
a

ti
o
n
 C

o
n
fi
g
u
ra

ti
o
n

P
h
a

s
e

Subscribe Request

Response Subscribe Request

Response

Invalid Configuration

Valid Configuration

Notify Message

OK Notify Message

OK

Service x-2Service x-1 Service y-2Service y-1 Service z-1 Service z-2 Service z-3

Subscribe Request

Response Subscribe Request

Response

Figure 5. Application Configuration and Execution Phase.

an execution phase in which the application is running. First,
the following section describes the configuration phase. Each
peer providing a service involved in an application receives
the formal description of the application. As described in
section III, each peer only receives the segment of the
application description, which contains the necessary
information to configure its individual service and insert it
into the overall context of the application according to the
application description. Inserting into the overall context of
the application means that the peer connects the interfaces
(input, output) of his service to the other associated services
in order to exchange information. By automatically parsing
the application description, the peer determines the following
information. Service connections: To which other services
his offered service should be connected. A distinction is
made here between input interfaces served by another service
and output interfaces which are served by the service itself.
Input interface information content: Which information is
received via the input interface. Output interface
information content: What information via the output
interface should be transferred to another service. Output
interface condition: Under which prerequisites an
information is to be sent to a service via an output interface
(directly on request or time-delayed, if a defined condition is
met). Service configuration parameter: If configuration
parameters have been defined for the offered service, the
service must be configured accordingly. Global attributes:
Information about attributes provided by services that are not
directly connected to their own service via an interface. [17]

Each peer now uses the configuration information,
determined by the automated parsing of the formal
application description, to integrate its service autonomously
into the overall context of the application. First, each peer
determines the specific instances of the services to be
connected to it, i.e. determines a list of peers that offer the
service based on the service ID. This is done as described
above. The exchange of information takes place in the
approach described in this publication according to the
Subscribe/ Notify principle. The connection of an input
interface of a service with the output interface of another
service is performed by sending the peer with its output
interface a subscribe request. If the requested service is
available, the requested peer confirms service utilisation
request with a positive response. If the service is not
available or is available later, the requested peer responds
with a negative response and rejects to consume the service
or defines a later usage time. Once the connections between

the instances of the services are established, the local
configuration of the service is performed. This consists of the
assignment of the defined input and output information
content to the interfaces (transition assign). Furthermore, the
transfer of any existing service configuration parameters to
the local service is performed. In addition, the conditions are
configured locally that define the preconditions to transmit
an information to a connected service via the output interface
(transition condition). [17] As described above and shown in
Fig. 5, the described approach also includes the execution
phase additionally to configuration phase of an application.
In execution phase, the exchange of information takes place
between the peers, which represents the M2M application
service. Once the connections between the service instances
have been established, the information is transmitted
between the services using Notify messages. Sending a
notification message either is done directly on request
(global attribute or condition less transition) or as soon as a
defined condition (transition condition) applies. [17]

It should be noted that the same service can be provided
by several instances (peers). This may result in incomplete
configurations of an application during the configuration
phase. In addition to a complete configuration of an
application, Fig. 5 also shows an incomplete configuration of
an application). For this purpose, an algorithm has been
developed which allows all peers to determine independently
whether they have embedded themselves in a valid
application configuration. The algorithm developed for this
purpose is based on the computation of the transitive closure
derived from [21] of all connections established in the P2P
network in the application context. If a peer detects that it
has embedded itself in an invalid application configuration,
the established connections are automatically disconnected
and, if necessary, a new local configuration process is
performed. Thus, it is possible to determine independently a
valid application configuration without having to have a
complete view of the system. [17]

V. CONCLUSION

This publication presented principles and details of a
novel concept for autonomous and decentralised M2M
application service provision. This concept offers new
possibilities for applications, realised by several peers,
independent of central appliances or corporations. Especially
the independent structure of presented system architecture
and the simplicity of M2M service/ application creation
combined with the autonomous management of M2M
application services form the strength of the proposed
framework and offer a promising approach for supporting
M2M networks with end user environment integration.

ACKNOWLEDGMENT

The research project P2P4M2M providing the basis for
this publication is partially funded by the Federal Ministry of
Education and Research (BMBF) of the Federal Republic of
Germany under grant number 03FH022IX5. The authors of
this publication are in charge of its content.

REFERENCES

[1] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P based
service provisioning in M2M networks”, Proc. of Sixth International

Conference on Internet Technologies & Applications (ITA 15),
Wrexham, Wales, UK, September 2015.

[2] S. Clayman, A. Galis, "INOX: a managed service platform for
interconnected smart objects", Proc. of the workshop on Internet of

Things and Service Platforms 2011 (loTSP'11), pp. 1-8, 2011.

[3] S. Zhang, J. Zhang, W. Li, "Design of M2M Platform Based on J2EE
and SOA", 2010 International Conference on E-Business and E-

Government, pp. 2029–2032, September 2010.

[4] Q. Xiaocong, Z. Jidong, "Study on the structure of “Internet of
Things(IOT)“ business operation support platform", 2010 12th IEEE

Int. Conf. Commun. Technology (ICCT), pp. 1068-1071, 2010.

[5] L. Foschini, T. Taleb, A. Corradi, D. Bottazzi, "M2M-based
metropolitan platform for IMS-enabled road traffic management in

IoT", IEEE Commun. Mag., vol. 49, no. 11, pp. 50-57, 2011.

[6] Y. J. Kim, E. K. Kim, B. W. Nam, I. Chong, "Service composition
using new DSON platform architecture for M2M service", Proc. of

the International Conference on Information Network 2012, pp. 114-
119, February 2012.

[7] J. Kim, J. Lee, J. Kim, J. Yun, "M2M Service Platforms: Survey

Issues and Enabling Technologies", IEEE Communications Surveys
& Tutorials, vol. 16, no. 1, pp. 61-76, First Quarter 2014.

[8] oneM2M Standardisation Committee, “oneM2M Release 2
specifications”,http://www.onem2m.org/technical/published-

documents, December 2016.

[9] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “Load reduction in
distribution networks through P2P networked energy-community”,

Proc. of Fifth International Conference on Internet Technologies &
Applications (ITA 13), Wrexham, Wales, UK, September 2013.

[10] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P-based

community concept for M2M Applications”, Proc. of Second
International Conference on Future Generation Communication

Technologies (FGCT 2013), London, UK, December 2013.

[11] M. Steinheimer, U. Trick, P. Ruhrig, R. Tönjes, M. Fischer, D.
Hölker, “SIP-basierte P2P-Vernetzung in einer Energie-Community“,

ITG-Fachbericht 242: Mobilkommunikation, VDE Verlag GmbH,
Osnabrück, Germany, ISBN: 978-3-8007-3516-7, ISSN: 0932-6022,

pp. 64, Mai 2013.

[12] M. Steinheimer, U. Trick, W. Fuhrmann, B. Ghita, “P2P-based M2M
Community Applications”, Proc. of Eleventh International Network

Conference (INC 2016), Frankfurt, Germany, July 2016.

[13] M. Steinheimer, U. Trick, P. Wacht, P. Ruhrig, “Decentralised
optimisation solution for Smart Grids using Smart Market aspects and

P2P internetworked Energy-Community“, IEC/ SGCC/ VDE World
Smart Grid Forum 2013, Berlin, Germany, September 2013.

[14] ITU-T Y.101 (2000), Recommendation, “Global Information
Infrastructure terminology: Terms and definitions”, ITU, 2000.

[15] ISO IEC 20000-1:2011 (2011) “Part 1: Service management system

requirements”, IEEE, 2011.

[16] ITIL V3.1.24 (2007) “Glossary of Terms, Definitions and
Acronyms”, ITIL, 2007.

[17] M. Steinheimer, “Optimierte P2P-Dienstearchitektur für

hochverfügbare M2M-Applikationen (P2P4M2M)”, TR-004,
Frankfurt, Germany, October 2016.

[18] Object Management Group, “OMG Model Driven Architecture”,

http://www.omg.org/mda/, January 2017.

[19] Object Management Group, “Model Driven Architecture (MDA)
MDA Guide rev. 2.0”, Boston, USA, June 2014.

[20] R. Petrasch, O. Meimberg, “Model Driven Architecture“,
dpunkt.verlag, Heidelberg, Germany, ISBN: 978-3-89864-343-6,

2006.

[21] V. Turau, “Algorithmische Graphentheorie“, De Gruyter Oldenbourg,
Munich, Germany, ISBN: 978-3-486-59057-9, 2009.

